(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
conv(0') → cons(nil, 0')
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
conv(0') → cons(nil, 0')
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
half,
lastbit,
convThey will be analysed ascendingly in the following order:
half < conv
lastbit < conv
(6) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
conv(
0') →
cons(
nil,
0')
conv(
s(
x)) →
cons(
conv(
half(
s(
x))),
lastbit(
s(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(gen_nil:cons4_0(x), 0')
The following defined symbols remain to be analysed:
half, lastbit, conv
They will be analysed ascendingly in the following order:
half < conv
lastbit < conv
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s3_0(
*(
2,
n6_0))) →
gen_0':s3_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
half(gen_0':s3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s3_0(*(2, +(n6_0, 1)))) →RΩ(1)
s(half(gen_0':s3_0(*(2, n6_0)))) →IH
s(gen_0':s3_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
conv(
0') →
cons(
nil,
0')
conv(
s(
x)) →
cons(
conv(
half(
s(
x))),
lastbit(
s(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(gen_nil:cons4_0(x), 0')
The following defined symbols remain to be analysed:
lastbit, conv
They will be analysed ascendingly in the following order:
lastbit < conv
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lastbit(
gen_0':s3_0(
*(
2,
n324_0))) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n324
0)
Induction Base:
lastbit(gen_0':s3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
lastbit(gen_0':s3_0(*(2, +(n324_0, 1)))) →RΩ(1)
lastbit(gen_0':s3_0(*(2, n324_0))) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
conv(
0') →
cons(
nil,
0')
conv(
s(
x)) →
cons(
conv(
half(
s(
x))),
lastbit(
s(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
lastbit(gen_0':s3_0(*(2, n324_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n3240)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(gen_nil:cons4_0(x), 0')
The following defined symbols remain to be analysed:
conv
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol conv.
(14) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
conv(
0') →
cons(
nil,
0')
conv(
s(
x)) →
cons(
conv(
half(
s(
x))),
lastbit(
s(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
lastbit(gen_0':s3_0(*(2, n324_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n3240)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(gen_nil:cons4_0(x), 0')
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
conv(
0') →
cons(
nil,
0')
conv(
s(
x)) →
cons(
conv(
half(
s(
x))),
lastbit(
s(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
lastbit(gen_0':s3_0(*(2, n324_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n3240)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(gen_nil:cons4_0(x), 0')
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
conv(
0') →
cons(
nil,
0')
conv(
s(
x)) →
cons(
conv(
half(
s(
x))),
lastbit(
s(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
conv :: 0':s → nil:cons
cons :: nil:cons → 0':s → nil:cons
nil :: nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(gen_nil:cons4_0(x), 0')
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n6_0))) → gen_0':s3_0(n6_0), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)